
J
H
E
P
0
5
(
2
0
0
7
)
0
4
8

Published by Institute of Physics Publishing for SISSA

Received: October 30, 2006

Accepted: May 9, 2007

Published: May 15, 2007

Towards a Higgs phase of gravity in string theory

Shinji Mukohyama

Department of Physics and Research Center for the Early Universe,

The University of Tokyo, Tokyo 113-0033, Japan

E-mail: mukoyama@utap.phys.s.u-tokyo.ac.jp

Abstract: We consider a braneworld scenario with a black brane parallel to our brane,

aiming towards a Higgs phase of gravity in string theory. The existence of the black brane

spontaneously breaks the Lorentz symmetry on our brane but preserves the rotational and

translational invariance. If all moduli are stabilized then this should lead to a Higgs phase

of gravity. We investigate moduli stabilization by using a KKLT-type moduli potential in

the context of type IIB warped flux compactification.

Keywords: Spontaneous Symmetry Breaking, p-branes, Classical Theories of Gravity,

dS vacua in string theory.

c© SISSA 2007 http://jhep.sissa.it/archive/papers/jhep052007048/jhep052007048.pdf

mailto:mukoyama@utap.phys.s.u-tokyo.ac.jp
http://jhep.sissa.it/stdsearch
http://jhep.sissa.it/stdsearch


J
H
E
P
0
5
(
2
0
0
7
)
0
4
8

Contents

1. Introduction 1

2. Gauged ghost condensation 3

3. Jeans-like instability and Gregory-Laflamme instability 7

4. Non-extremal black brane and Lorentz breaking 10

5. Setup in string theory 11

5.1 Moduli stabilization 13

5.2 A tale of anti-D-branes 14

5.3 What does the correspondence principle require? 15

5.4 Lorentz breaking on our brane 17

5.5 Horizon modes and (locally) localized gravity 18

6. Summary and discussion 19

A. Four-parameter family of black-brane solutions 21

1. Introduction

Dark energy and dark matter are two major mysteries in modern cosmology. Although

more than 90% of our universe is filled with them, we do not know what they really are. In

this situation it seems rather natural to ask whether we can modify gravity in the infrared

(IR) to address those mysteries.

However, modifying gravity in the IR is not easy. For example, in massive gravity [1]

and the DGP brane model [2], it is known that a scalar degree of freedom becomes strongly

coupled at a rather low energy scale [3, 4]. If gravity is to be modified at and beyond the

present Hubble distance then the scalar degree of freedom becomes strongly coupled and its

dynamics is dominated by quantum corrections at and within ∼ 1000km. This is similar

to what happens to a massive gauge theory, but the situation is worse. In a massive

gauge theory one can decouple the strongly coupled sector from the rest of the world by

tuning the gauge coupling to a small value. On the other hand, in the massive gravity

and the DGP model, the strength of interactions between the strongly coupled sector and

the rest of the world is set by the Newton’s constant and cannot be fine-tuned away. This

means that, as soon as the strong coupling appears, gravitational phenomena cannot be

properly described by those theories without knowledge about yet-unknown ultraviolet

(UV) completion. Since this issue in the UV is originated from the properties in the IR, it
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is not totally clear whether it is possible to UV complete those theories without affecting

the IR behaviors.

In a gauge theory, it is the Higgs mechanism that gives a mass term to a gauge

boson and modifies a force law in a theoretically controllable way. Thus, it is natural

to apply the idea of the Higgs mechanism to gravity to modify its IR behavior. Since

the symmetry relevant to gravity is diffeomorphism invariance, the Higgs mechanism for

gravity should spontaneously break at least part of the diffeomorphism invariance. Note

that in gravitational theories, Lorentz breaking inevitably implies breaking diffeomorphism

invariance and, thus, a Higgs phase of gravity.

The simplest Higgs phase of gravity is the ghost condensation [5], including just one

Nambu-Goldstone (NG) boson. Because of the simplicity and the universality of the low

energy effective field theory (EFT), it is worthwhile investigating properties of the ghost

condensation, whether or not it leads to interesting physical phenomena. Fortunately, it

turns out that the physics in the simplest Higgs phase of gravity is extremely rich and

interesting. They include IR modification of gravity [5], a new spin-dependent force [6],

a qualitatively different picture of inflationary de Sitter phase [7, 8], effects of moving

sources [9, 10], intriguing nonlinear dynamics [11, 12], properties of black holes [13 – 15],

implications to galaxy rotation curves [16 – 18], dark energy models [19 – 21], stable viola-

tion of null energy condition [22], cosmological perturbations [23], other classical dynam-

ics [24, 25], attempts towards UV completion [26, 27], and so on. In the ghost condensation

the strength of interactions between the NG boson and the rest of the world is controlled

by not only the Newton’s constant but also the scale of spontaneous Lorentz breaking M
in such a way that the interactions are completely turned off in the limit M/MP l → 0.

Therefore, general relativity is safely recovered in this limit. In ref. [12] it was argued that

the theory is compatible with all current experimental observations if M is lower than

∼ 100 GeV. Therefore, the ghost condensation opens up a number of new avenues for

attacking cosmological problems, including inflation, dark matter and dark energy.

While phenomenologies of the ghost condensation are still under investigation, it is

certainly important to seek a possible UV completion.

To realize the ghost condensation without fine-tuning, we need to spontaneously break

the 4-dimensional diffeomorphism invariance times a global shift symmetry down to the

3-dimensional spatial diffeomorphism invariance times an unbroken global shift symmetry,

where the latter global shift is a combination of the former global shift and the time

shift. However, it is generally believed that all symmetries in string theory are gauged.

Therefore, it seems more plausible to obtain the ghost condensation as the neutral limit of

the gauged version of the ghost condensation, i.e. the gauged ghost condensation [28]. To

obtain the gauged ghost condensation from the ghost condensation we replace the global

shift symmetry with a minimal gauge symmetry, i.e. U(1) gauge symmetry, so that no

global symmetry is needed. The ghost condensation can be obtained from the gauged

ghost condensation if we can fine-tune the gauge coupling to a sufficiently small value.

Some of low energy properties of the gauged ghost condensation, including the bound

M <∼ Min(1012 GeV, g2 1015 GeV) for g2 > g2
c , have been investigated in [28]. Here, g is

the gauge coupling and gc = M2/2M2
P l.
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The purpose of this paper is, as a step towards a Higgs phase of gravity in string theory,

to consider a braneworld scenario in which a black brane parallel to our brane breaks the

Lorentz symmetry on our brane. If all moduli are stabilized then this leads to a Higgs

phase of gravity in our world. From symmetry arguments, we expect that this is closely

related to the gauged ghost condensation.

The rest of this paper is organized as follows. In section 2 we review the gauged ghost

condensation by deriving its low energy EFT. This makes it clear that the structure of

the EFT is determined solely by the symmetry breaking pattern. In other words, different

setups should result in low energy EFTs with the same structure if the symmetry breaking

pattern is the same. In section 3 we investigate the dispersion relation of the NG boson

coupled with gravity and show that it exhibits Jeans-like instability if the gauge coupling in

the EFT is smaller than a critical value. We also point out a number of similarities between

the Jeans-like instability of the NG boson and the Gregory-Laflamme (GL) instability

of black branes [29, 30]. Those similarities motivate a braneworld setup considered in

section 5. In section 4 it is argued that, in (higher-dimensional) general relativity, a brane

with codimension more than 2 should form a black brane if the brane is sufficiently thin.

The string theory version of this statement is the correspondence principle for D-branes

and black branes [31], which plays a central role in the braneworld setup. In section 4 we

also see close connections between extremality of a black brane and the Lorentz symmetry

along the world-volume of the black brane. Motivated by various considerations in the

preceding sections, a braneworld setup in string theory is considered in section 5. Section 6

is devoted to a summary of this paper and discussions.

2. Gauged ghost condensation

The ghost condensation is the simplest Higgs phase of gravity in the sense that it contains

only one Nambu-Goldstone boson. The gauged ghost condensation is obtained by gaug-

ing the global shift symmetry of the ghost condensation [28]. In this section we give an

alternative derivation of the effective field theory (EFT) of the gauged ghost condensation

based on a symmetry breaking pattern.

For the gauged ghost condensation, we assume the following symmetry breaking pat-

tern.

(i) The 4-dimensional diffeomorphism invariance and a U(1) gauge symmetry is sponta-

neously broken down. The residual symmetries are the 3-dimensional spatial diffeo-

morphism invariance, the time reversal symmetry and a U(1) gauge symmetry. The

residual U(1) is a combination of the original U(1) and the time reparameterization.

(ii) The background spacetime metric is maximally symmetric, either Minkowski or de

Sitter.

Our strategy here is to write down the most general action invariant under the residual

symmetries. This gives the effective action in the unitary gauge. After that, the action

in a general gauge is obtained by gauge transformation. The gauge parameter associated
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with the broken symmetry actually appears in the action and is identified as the NG boson

associated with the spontaneous symmetry breaking.

For simplicity let us consider a Minkowski background plus perturbation: gµν = ηµν +

hµν . We also consider a U(1) gauge field aµ. The general infinitesimal diffeomorphism and

U(1) gauge transformations are δhµν = ∂µξν + ∂νξµ and δaµ = ∂µχ, where the 4-vector ξµ

and the scalar χ represent gauge degrees of freedom. The residual 3-dimensional spatial

diffeomorphism is given by

ξ0 = 0, ξi = ξi(t, ~x), χ = 0, (2.1)

and transforms the metric perturbation and the U(1) gauge field as

δh00 = 0, δh0i = ∂0ξi, δhij = ~∇iξj + ~∇jξi, δa0 = δai = 0. (2.2)

The residual U(1) gauge symmetry is characterized by

ξ0 (= −ξ0) = − g

Mχ(t, ~x), ξi = 0, χ = χ(t, ~x), (2.3)

and transforms the fields as

δh00 =
2g

M∂0χ, δh0i =
g

M
~∇iχ, δhij = 0, δa0 = ∂0χ, δai = ~∇iχ, (2.4)

where M is the scale of the spontaneous Lorentz breaking and g is the gauge coupling. On

the other hand, the choice

ξ0 (= −ξ0) = π(t, ~x), ξi = 0, χ = 0 (2.5)

corresponds to the broken symmetry and the fields are transformed as

δh00 = −2∂0π, δh0i = −~∇iπ, δhij = 0, δa0 = δai = 0. (2.6)

Now let us seek terms invariant under the both residual gauge transformations (2.2)

and (2.4). They must begin at quadratic order since we assumed that the Minkowski

background is a solution to the equation of motion. The leading term (without derivatives

acted on the metric perturbations) is
∫

d~x3dt h̃2
00, where

h̃00 ≡ h00 −
2g

Ma0. (2.7)

This is indeed invariant under both residual gauge transformations (2.2) and (2.4). From

this term, we can obtain the corresponding term in the effective action for the NG boson π.

Since h̃00 → h̃00−2∂0π under the broken symmetry transformation (2.6), by promoting π to

a physical degree of freedom we obtain the term
∫

d~x3dt (h̃00−2∂0π)2. This includes a time

kinetic term for π as well as mixing terms. At this point we wonder if we can get the usual

space kinetic term (~∇π)2 or not. The only possibility would be from (h0i)
2 since h0i → h0i−

~∇iπ under the broken symmetry transformation (2.6). However, this term is not invariant

under either (2.2) or (2.4), and, thus, cannot enter the effective action. Actually, by acting

derivatives on the metric components, we can find combinations manifestly invariant under
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the spatial diffeomorphism (2.2). They are made of the geometrical quantity called extrinsic

curvature. The extrinsic curvature Kij of a constant time surface is Kij = (∂0hij − ~∇ih0j −
~∇jh0j)/2 in the linear order and transforms as a tensor under the spatial diffeomorphism.

Indeed, it is invariant under the spatial diffeomorphism (2.2) since the background value

of the extrinsic curvature vanishes. Although it is not invariant under the residual U(1)

gauge transformation (2.4), it is possible to compensate the transformation of Kij with

that of derivatives of the U(1) gauge field. Indeed, the combination

K̃ij ≡ Kij +
g

M
~∇(iaj) (2.8)

is invariant under both (2.2) and (2.4), where ~∇(iaj) ≡ (~∇iaj + ~∇jai)/2. Thus,
∫

d~x3dt K̃2

and
∫

d~x3dt K̃ijK̃ij can be used in the action. Since K̃ij → K̃ij + ~∇i
~∇jπ under the

broken symmetry (2.6), we obtain
∫

d~x3dt (K̃ + ~∇2π)2 and
∫

d~x3dt (K̃ij + ~∇i~∇jπ)(K̃ij +
~∇i

~∇jπ). The field strength Fµν = ∂µaν −∂νaµ is also invariant under both (2.2) and (2.4).

Thus,
∫

d~x3dt F i
0 F0i and

∫

d~x3dt F ijFij can enter the action. These do not generate terms

involving the NG boson. Note that terms like
∫

d~x3dt K̃h̃00 are forbidden by the time

reversal symmetry.

Combining these terms, we obtain the effective action
∫

d~x3dt L, where

L =
M4

2

(

∂0π +
g

Ma0 −
1

2
h00

)2

− α1M2

2

(

~∇2π +
g

M
~∇iai + K

)2

−α2M2

2

(

~∇i~∇jπ +
g

M
~∇(iaj) + Kij

)(

~∇i
~∇jπ +

g

M
~∇(iaj) + Kij

)

+
1

2
F i

0 F0i −
γ1

4
F ijFij + · · · . (2.9)

Here, α1,2 and γ1 are dimensionless constants of order unity and we have normalized π,

aµ and g so that the coefficients of the first and the fourth terms become M4/2 and 1/2,

respectively.

In deriving the effective action (2.9), all we needed was the symmetry breaking pattern.

As intended, this action agrees with the effective action obtained in ref. [28] by simply

gauging the shift symmetry in the ghost condensation.

This action has the following symmetry:

hµν → hµν + ∂µξν + ∂νξµ, aµ → aµ + ∂µχ, π → π + ξ0 −
g

Mχ, (2.10)

where the gauge parameters ξµ and χ depend on t and ~x. By using χ, we can set a0 = 0

and obtain the effective action

L =
M4

2

(

∂0π − 1

2
h00

)2

− α1M2

2

(

~∇2π +
g

M
~∇iai + K

)2

−α2M2

2

(

~∇i~∇jπ +
g

M
~∇(iaj) + Kij

)(

~∇i
~∇jπ +

g

M
~∇(iaj) + Kij

)

+
1

2
∂0a

i∂0ai −
γ1

4
F ijFij + · · · . (2.11)
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This action has the following symmetry:

hµν → hµν + ∂µξν + ∂νξµ, ai → ai + ~∇iχ
(3), π → π + ξ0 −

g

Mχ(3), (2.12)

where χ(3) depends on ~x but is independent of t.

If the gauge coupling in the EFT is small enough then this reduces to the ghost

condensation [5]:

Lg→0 =
M4

2

(

∂0π − 1

2
h00

)2

− α1M2

2

(

~∇2π + K
)2

−α2M2

2

(

~∇i~∇jπ + Kij
)(

~∇i
~∇jπ + Kij

)

+ · · · , (2.13)

This action includes leading terms of the quadratic order only. Actually, it is possible

to show that nonlinear terms are irrelevant at low energies. To begin with, suppose that

the energy is scaled as E 7→ sE. Then, the time interval dt scales as dt 7→ s−1dt. To

determine the scaling rule for the spatial interval d~x and the NG boson π, we demand that

the leading action
∫

d~x3dt Lg→0 with hµν = 0 be invariant under the scaling. The results

are summarized as

E 7→ sE,

dt 7→ s−1dt,

d~x 7→ s−1/2d~x,

π 7→ s1/4π. (2.14)

Note that the scaling dimension of π is not equal to the mass dimension 1 but is 1/4 [5]. By

using this scaling, it is easy to identify the scaling dimensions of any nonlinear operators.

The leading nonlinear operator

∫

d~x3dtM4π̇(~∇π)2 (2.15)

scales as s1/4 and is irrelevant at low energies. All other nonlinear operators have scaling

dimension 1/4 or higher and, thus, are irrelevant. Therefore, those nonlinear operators

become less and less important as energies and momenta become low compared with the

scale M. Low energy dynamics of the NG boson is, thus, well described by the effective

action.

Going back to the action (2.11) for a non-vanishing g, the above power-counting anal-

ysis shows that at low energies and momenta, all nonlinear operators made of π and its

derivatives are irrelevant compared with the first three terms. On the other hand, the fourth

and fifth terms in (2.11) give leading kinetic terms for ai. Therefore, the action (2.11) well

describes the low energy dynamics of the system.

In summary, (2.11) is the low energy effective of the gauged ghost condensation char-

acterized by the symmetry breaking pattern in the beginning of this section. The structure

of the effective action is universal since it is determined solely by the symmetry breaking
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pattern. Different setups of Higgs phase of gravity should result in low energy EFTs of the

same structure if their symmetry breaking patters are the same. If the gauge coupling g

is small enough then the effective action is reduced to (2.13) and agrees with that of the

ghost condensation.

3. Jeans-like instability and Gregory-Laflamme instability

The EFT (2.11) should be coupled to Einstein gravity. As we shall see below, qualitative

behavior of the coupled system depends on whether the gauge coupling g is larger than a

critical value gc or smaller [28]. For g2 > g2
c , the linear perturbation around Minkowski

background is stable. On the other hand, for g2 < g2
c , the coupled system exhibits a

Jeans-like instability for long wavelength modes as in the ghost condensation [5]. In the

end of this section we shall point out similarities between this Jeans-like instability and the

Gregory-Laflamme (GL) instability [29, 30] of black branes. This similarity is what will

motivate us to consider a scenario for a Higgs phase of gravity in string theory explained

in section 5.

Let us now derive the dispersion relation for the NG boson described by (2.11).

Since the 3-dimensional spatial diffeomorphism invariance is preserved, linear perturbations

around the background can be decomposed into scalar, vector and tensor type, according

to their transformation properties under the spatial diffeomorphism. In this section we

consider scalar-type perturbation.

For scalar-type perturbation, ai is written as ai = ~∇iaL, where aL depends on t and

~x. By setting α2 = 0 for simplicity, the action (2.11) then reduces to

L =
M4

2

(

∂0π − 1

2
h00

)2

− α1M2

2

(

~∇2π +
g

M
~∇2aL + K

)2
+

1

2
(∂0

~∇aL)2. (3.1)

Thus, the equations of motion derived from the total action
∫

d~x3dt (LEH + L) are

M2
PlG00 + M4

(

∂0π − 1

2
h00

)

= 0,

M2
PlG0i − α1M2~∇i

(

~∇2π +
g

M
~∇2aL + K

)

= 0,

M2
PlGij − α1M2∂0

(

~∇2π +
g

M
~∇2aL + K

)

δij = 0,

∂2
0aL − α1gM

(

~∇2π +
g

M
~∇2aL + K

)

= 0,

∂0

(

∂0π − 1

2
h00

)

+
α1

M2
~∇2

(

~∇2π +
g

M
~∇2aL + K

)

= 0. (3.2)

In the longitudinal gauge

ds2
4 = −(1 + 2Φ)dt2 + (1 − 2Ψ)d~x2, (3.3)
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the Einstein tensor and the extrinsic curvature are

G00 = 2~∇2Ψ,

G0i = 2∂0
~∇iΨ,

Gij = 2

[

∂2
0Ψ +

1

3
~∇2(Φ − Ψ)

]

δij −
(

~∇i
~∇j −

1

3
~∇2δij

)

(Φ − Ψ),

Kij = −∂0Ψδij. (3.4)

Thus, the traceless part of the third equation of motion implies Φ = Ψ. The rest of the

equations of motion become

2M2
Pl

~∇2Φ + M4(∂0π + Φ) = 0,

2M2
Pl∂0

~∇iΦ − α1M2~∇i

(

~∇2π +
g

M
~∇2aL − 3∂0Φ

)

= 0,

2M2
Pl∂

2
0Φ − α1M2∂0

(

~∇2π +
g

M
~∇2aL − 3∂0Φ

)

= 0,

∂2
0aL − α1gM

(

~∇2π +
g

M
~∇2aL − 3∂0Φ

)

= 0,

∂0(∂0π + Φ) +
α1

M2
~∇2

(

~∇2π +
g

M
~∇2aL − 3∂0Φ

)

= 0. (3.5)

The second and third equations imply that

∂0Φ =
α1g

2
c

1 + 3α1g2
c

(

~∇2π +
g

M
~∇2aL

)

, (3.6)

where

g2
c =

M2

2M2
Pl

. (3.7)

The physical meaning of gc will be clarified soon. By substituting this to the fifth equation,

we obtain

∂2
0π +

α1

1 + 3α1g2
c

(

g2
c +

~∇2

M2

)

(

~∇2π +
g

M
~∇2aL

)

= 0. (3.8)

Finally, by acting the operator [∂2
0 − α1g

2~∇2/(1 + 3α1g
2
c )] on this equation and using the

fourth equation (with the substitution of (3.6)), we obtain

∂2
0

[

∂2
0 +

α1

1 + 3α1g2
c

(

−g2 + g2
c +

~∇2

M2

)

~∇2

]

π = 0. (3.9)

Thus, by neglecting 3α1g
2
c (≪ 1) in the denominator, this equation implies the following

dispersion relation:

ω2 = α1(g
2 − g2

c )
~k2 +

α1

M2
~k4, (3.10)

where gc is defined by (3.7). For the stability of modes with high momenta, we assume that

α1 > 0. When g2 ≪ g2
c , the gauged ghost condensation reduces to the ghost condensation

and the dispersion relation becomes

ω2 = −α1M2

2M2
Pl

~k2 +
α1

M2
~k4 for g2 ≪ g2

c . (3.11)
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From the dispersion relation (3.10) it is easy to see that the NG boson coupled with

the U(1) field and gravity is stable if g2 > g2
c . On the other hand, for g2 < g2

c , modes with

long wavelength are unstable. For a usual fluid with the background energy density ρ0,

the dispersion relation is ω2 = c2
sk

2 − ω2
J , where cs is the sound speed and ω2

J = 4πGNρ0,

and long-scale modes with c2
sk

2 < ω2
J have instability called Jeans instability. The Jeans

instability is originated from the attractive nature of gravity, and is an important instability

rather than catastrophe since it contributes to the structure formation in the universe. The

long-scale instability indicated by the dispersion relation (3.10) for g2 < g2
c is an analog of

the Jeans instability. In the limit g2 ≪ g2
c , from (3.11) one can see that the length and

time scales characterizing the most unstable mode are

rc ≃
MPl

M2
, tc ≃

M2
Pl

M3
for g2 ≪ g2

c , (3.12)

and are much longer than 1/M. For larger g2 (< g2
c ), the length and time scales are even

longer.

Thus, the physical meaning of gc is the critical value of the gauge coupling below which

the NG boson exhibits the Jeans-like instability. For small gauge coupling g2 < g2
c , the

attractive nature of gravity dominates over the repulsive U(1) gauge force. This is the

reason for the Jeans-like instability, which reflects the attractive nature of gravity. On the

other hand, for large gauge coupling g2 > g2
c , the repulsive nature of the U(1) gauge force

dominates over the attractive nature of gravity and the Jeans-like instability disappears.

Of course, even for g2 < g2
c , the Jeans-like instability disappears in the expanding universe

if the Hubble expansion rate is large enough.

Gregory-Laflamme (GL) instability [29, 30] of black brane solutions is a classical in-

stability in which the mass of the black brane tends to clump non-uniformly. Intriguingly,

as we shall point out in the following, there are a couple of similarities to the Jeans-like

instability of the NG boson explained above.

First, both instabilities are for long wavelength modes. Modes with wavelength shorter

than a critical length are stable in both cases. Indeed, the dispersion relation for the GL

instability is qualitatively the same as (3.10) with g2 < g2
c as one can see from figure 1

of [29] and figure 6 of [30]. Note that the momentum µ along the world-volume of the black

brane must be replaced by
√

~k2 and the growth rate Ω must be replaced by
√
−ω2 in order

to compare these two dispersion relations.

Second, both instabilities disappear when the Lorentz symmetry is recovered. The

recovery of the Lorentz symmetry corresponds to the limit M/MPl → 0 in the above EFT

coupled to gravity, and in this limit the Jeans-like instability indeed disappears (rc → ∞
and tc → ∞) even for g2 ≪ g2

c . On the other hand, as we shall see in section 4 and

appendix A, a non-extremal black brane tends to break the Lorentz symmetry along its

world-volume: a non-extremal black brane has a preferred frame in which it is at rest,

and a Lorentz boost even in the direction parallel to its world-volume does not preserve

the form of the metric. However, as we shall see explicitly for a four-parameter family of

black p-brane solutions, when the Lorentz symmetry is recovered, a black brane becomes

extremal and BPS-saturated. It is thought that extremal black p-branes are stable and
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do not exhibit the GL instability [32]. Hence, the GL instability also disappears when the

Lorentz symmetry along the world-volume of the black brane is recovered.

Having seen these similarities, it is perhaps tempting to speculate that the GL insta-

bility of a non-extremal black brane might be interpreted as the Jeans-like instability of

the NG boson associated with the spontaneous Lorentz breaking along the world-volume of

the black brane. If this is true in some sense then we should expect close relations between

the NG boson π in the EFT and the mass density of the black brane since they are the

degrees of freedom exhibiting the instabilities. Similarly, the spatial components ai of the

U(1) gauge field should be related to the velocity field of the black brane mass density.

To confirm these expectations is far beyond the scope of this paper, but it is certainly

worthwhile investigating these expected relations by detailed analysis.

In summary, if the gauge coupling in the gauged ghost condensation is smaller than a

critical value then the NG boson coupled with gravity exhibits a Jeans-like instability for

long wavelength modes as in the ghost condensation [5]. We have pointed out similarities

between the Jeans-like instability of the NG boson and the Gregory-Laflamme (GL) insta-

bility [29, 30] of black branes and speculated possible correspondence between these two

instabilities.

4. Non-extremal black brane and Lorentz breaking

As already mentioned in the previous section, a black brane can break the Lorentz sym-

metry along its world-volume. This is due to different radial dependence of the time-time

and space-space components of the metric. Hence, it is tempting to seek a setup in which

a black brane leads to a Higgs phase of gravity in our 4-dimensional world. For this pur-

pose, it is necessary to embed our 4-dimensional world parallel to the world-volume of

the black brane. This inevitably leads us to consider braneworld scenarios, in which our

4-dimensional world is supposed to be a brane in a higher dimensional bulk spacetime.

In braneworld scenarios, branes other than our world can be included and some of

them might be black branes. Actually, in (higher-dimensional) general relativity, branes

with more than two codimensions tend to form black branes in the limit where their

thickness becomes sufficiently small. On the other hand, in the case of codimension-1,

the dynamics of a brane coupled with higher dimensional gravity is consistently described

by Israel’s junction condition [33] even in the thin brane limit. The thin brane limit of

codimension-2 objects is more subtle. If the higher-dimensional geometry surrounding a

codimension-2 brane is axisymmetric and if the brane energy momentum is that of vacuum

energy, or tension, then gravity around the brane in the thin brane limit is consistently

described by a deficit angle. However, if either of the two conditions (the axisymmetry

in the bulk and the brane energy momentum of vacuum energy type) is violated then the

description breaks down. For codimensions more than two, there is no well-defined thin

brane limit in (higher-dimensional) general relativity and a brane tends to form a black

brane.

As already stated, it often happens that a black brane breaks the Lorentz symmetry

along its world-volume. This is essentially because a black brane has a preferred frame in
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which it is at rest and a Lorentz boost even in the direction parallel to its world-volume

does not preserve the form of the metric. In other words, the time-time component and

the space-space components of the metric depend differently on the radial coordinate.

In appendix A we consider a simple example in which we can explicity see the Lorentz

breaking along the world-volume of a black brane. We investigate a four-parameter family

of p-brane solutions (p = 3, 4, 5, 6) in type II A/B supergravity. It is shown that the

regularity of the horizon sets two independent constraints on the parameters of the solutions

and, thus, reduces the four-parameter family of solutions to a two-parameter family. As

a result, a regular non-extremal black p-brane in the family of solutions always breaks

the (p + 1)-dimensional Lorentz symmetry along its world-volume. On the other hand,

the p-dimensional spatial rotational invariance and the (p + 1)-dimensional translational

invariance are preserved. Intriguingly, the Lorentz symmetry is restored if and only if the

black brane becomes extremal and BPS-saturated.

We expect that this connection between the non-extremality and the Lorentz breaking

should hold in more general situations. Thus, a non-extremal black brane may be used as

a source of spontaneous Lorentz breaking and may lead to a Higgs phase of gravity.

5. Setup in string theory

M/string theory has been considered as a strong candidate for a unified theory of funda-

mental physics. Its mathematical consistency and beauty have been attracting interest of

many physicists. On the other hand, one of its drawbacks is lack of direct experimental

or observational evidence of such a structure at high energies. Having this situation, it

seems rather natural to turn our eyes to cosmology and look for cosmological implications

of M/string theory since the universe is supposed to have experienced a high energy epoch

at its early stage.

In order to realize realistic cosmological scenarios in string theory, one of the most

important issues is the moduli stabilization. In the context of the type IIB superstring

theory, Kachru, Kallosh, Linde and Trivedi (KKLT) [34] stabilized all moduli by using

various fluxes and non-perturbative corrections to the moduli potential. Thus, this is a

good starting point for cosmology in string theory.

In the KKLT setup anti-D3-branes play an essential role. Inclusion of anti-D3-branes

at the bottom of a warped throat uplifts stable AdS vacua with negative cosmological

constant to meta-stable de Sitter or Minkowski vacua with positive or zero cosmological

constant in a theoretically controllable way. Without anti-D3-branes or other alternative

sources such as a D7-brane with non-zero flux inside its world-volume [35, 36], we would

end up with a negative cosmological constant, which is inconsistent with observations.

In this section we consider a situation in which the anti-D3-branes at the bottom of a

warped throat may be described by a black brane and spontaneously break a part of the

Lorentz symmetry along its world volume.

Before going into the setup, however, let us list what we have learned from various

considerations in the previous sections.
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(a) The structure of the low energy effective field theory (EFT) of gauged ghost conden-

sation is determined solely by the symmetry breaking pattern. Thus, all we have to

do is to find a setup realizing the same symmetry breaking pattern.

(b) Similarities between the Jeans-like instability of the Nambu-Goldstone (NG) boson

and the Gregory-Laflamme (GL) instability of black branes suggest using a black

brane.

(c) A non-extremal black brane tends to spontaneously break the Lorentz symmetry

along its world-volume.

(d) In order for a black brane to break the Lorentz symmetry in our world, our world

must be parallel to the world-volume of the black brane. This inevitably leads us to

consider a braneworld scenario.

(e) In (higher-dimensional) general relativity, branes with codimensions more than two

tend to form black branes when the brane thickness is sufficiently small. The string

theory version of this statement is the correspondence principle for stringy objects

and black objects [31].

These suggest a braneworld scenario with a black brane parallel to our brane.1. Consistent

braneworld scenarios in string theory can be constructed in the KKLT setup of warped flux

compactification, which realizes de Sitter vacua in string theory. Thus, we shall start with

the warped flux compactification and seek a condition under which the correspondence

principle [31] states that a black brane should form. In the setup, the world-volume of the

black brane shall be parallel to a brane representing our world.

We consider the KKLT setup of Type IIB compactification with NS-NS and R-R fluxes.

One begins with a warped throat generated by fluxes [39] and glues it to a bulk Calabi-

Yau 3-fold to have compact extra dimensions [40]. The volume of the internal space is

stabilized by non-perturbative effects such as D-instantons [41]. Since the 4-dimensional

cosmological constant for this supersymmetric configuration is negative, KKLT [34] adds

anti-D3-branes at the tip of the warped throat and explicitly breaks supersymmetry to

uplift the AdS vacua to meta-stable de Sitter vacua. Even if anti-D3-branes are initially

placed at some other places in the internal space, they feel attractive force towards the tip

of the throat because of the non-BPS nature of the configuration [42]. Hence, the anti-D3-

branes fall towards the tip and finally settle there because of the Hubble friction due to

expansion of the 4-dimensional universe [43].

The geometry deep inside the warped throat is approximated by the Klebanov-Strassler

(KS) solution [39]. The bottom of the KS throat is actually not a point but has the topology

R4×S3, where R4 represents the 4-dimensional universe and the radius of the S3 is of order√
gsM ls, where M is an integer representing a quantized flux around the S3 [44]. Thus,

1Similar attempts in the context of higher-dimensional general relativity require violation of the null

energy condition or inclusion of naked singularities other than branes with codimension one [37, 38]. Our

setup includes branes with higher codimensions as well as non-perturbative effects, which were not included

in those attempts.
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if gsM ≫ 1 then the curvature of the geometry is everywhere small and the supergravity

approximation is justified. Throughout this paper we assume this condition. In order for

the string perturbative expansion to be valid, we require gs <∼ 1 as well. In summary, we

assume that

gsM ≫ 1, gs <∼ 1. (5.1)

Note that this configuration is only meta-stable. The anti-D3-branes can annihilate

with the D3 charge induced by the background fluxes via quantum tunneling. Therefore,

the configuration lasts for only a finite duration although the lifetime can be made longer

than the age of the universe.

5.1 Moduli stabilization

For this setup to work it is important to make sure that the KKLT type moduli stabilization

is valid. We have to stabilize both complex structure moduli and Kähler moduli in the

system. Since all complex structure moduli are stabilized by fluxes, in this subsection we

consider stabilizing Kähler moduli. In the following, for simplicity we shall consider only

one Kähler modulus. We make a comment on the possibility of having many Kähler moduli

in the end of subsection 5.3.

The supersymmetric contribution to the potential for the volume modulus σ combined

with the axion α is specified by the Kähler and super potentials of the form

K = −3 log(T + T̄ ), W = W0 + Ae−aT , (5.2)

where T = σ + iα. As in the original KKLT setup, we uplift the AdS vacua to de Sitter

vacua by introducing anti-D3-branes, which adds a non-supersymmetric contribution of

the form

δV =
D

(T + T̄ )2
, D =

2a4
0T3N3

π2g4
s

, (5.3)

where

a0 ≃ exp

(

− 2πK

3gsM

)

(5.4)

is the warp factor at the bottom of the throat. The total potential for σ (with α = 0) is

V (σ) =
aAe−aσ

2σ2

(

σaA

3
e−aσ + W0 + Ae−aσ

)

+
D

4σ2
. (5.5)

For example, as shown in figure 1, D/A2 = 10−4 with W0/A
2 = −0.1107, a = π/87 gives

a moduli potential with a meta-stable de Sitter vacuum. For validity of the geometrical

description, it is important to make sure that a local minimum of the potential is at a

sufficiently large value of the volume modulus σ. The example shown in figure 1 has a local

minimum at σ ≃ 100, which is large enough.

We would like to make the coefficient D of δV sufficiently small so that the moduli

potential with the non-supersymmetric correction has a local minimum at large enough σ.

On the other hand, as we shall see in subsection 5.3, we would like to consider a large N3

so that the anti-D3-branes form a black brane. Since D ∝ a4
0N3, the large N3 threatens
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Figure 1: The moduli potential (multiplied by 109) for D/A2 = 10−4, W0/A
2 = −0.1107 and

a = π/87. There is a meta-stable minimum at σ ≃ 100.

validity of the moduli stabilization while the exponential dependence (5.4) of a0 on the

fluxes will certainly help reducing D.

Note that one cannot make the warp factor a0 arbitrarily small since the number of

branes and fluxes must satisfy the tadpole condition

−N3 + MK =
χ

24
, (5.6)

where χ is the Euler characteristics of the Calabi-Yau fourfold [40]. Ref. [45] lists examples

of Calabi-Yau fourfolds in the range

−240 ≤ χ ≤ 1820448. (5.7)

As far as the author knows, there is no argument prohibiting Calabi-Yau fourfolds with

larger χ. However, for concreteness, we restrict our considerations to the range (5.7).

The tadpole condition (5.6) combined with the inequalities (5.7) and (5.1) implies that K

cannot be arbitrarily large for a fixed N3. This means that the warp factor given by (5.4)

cannot be arbitrarily small. Therefore, in order to make D to have a small value, we must

carefully choose parameters (N3, M , K, gs) so that all consistency conditions are satisfied.

In subsection 5.3 we shall see that this is indeed possible.

5.2 A tale of anti-D-branes

As already stated, anti-D3-branes or other supersymmetry-breaking branes at the tip of

a warped throat is one of the essential ingredients of the type IIB warped flux compacti-

fication. Without those branes, we would end up with a negative cosmological constant,

which is inconsistent with observations.
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The anti-D3-branes are distributed over the S3 at the bottom of the warped throat,

but should feel slight attractive force towards each other since supersymmetry is broken

and the attractive gravitational force is not completely canceled by the repulsive R-R force.

Thus, in the end, they should gather and form a bound object. The gravitational radius

of the bound object made of N3 anti-D3-branes should be2

Rg ≃ (4πgsN3)
1/4 ls. (5.8)

It is thought that the system of anti-D3-branes should relax to a non-supersymmetric NS

5-brane “giant graviton” configuration [42]. The NS 5-brane is wrapped on a S2 inside

the internal S3 and carries anti-D3 charge N3 coming from a world-volume magnetic flux.

This configuration is classically stable for

N3

M
< 0.08, (5.9)

but can quantum-mechanically tunnel to a supersymmetric vacuum. The decay rate is

Γ ∼ l−1
s exp

(

−27π4b12
0 gsM

6

64N
3
3

)

, (5.10)

where b0 ≃ 0.93266. Being conservative,3 if we suppose ls ≃ M−1
P l then Γ ≪ H0 ≃

10−61MP l requires that
gsM

6

N
3
3

>∼ 8. (5.11)

This condition is easily satisfied. For this reason, we consider the NS 5-brane state as a

starting point of our discussion. The radius of the S2 on which the NS 5-brane is wrapped

is

RS2 =
2πN 3

b3
0M

√

gsM ls. (5.12)

5.3 What does the correspondence principle require?

We shall now seek the condition under which the anti-D3-branes at the tip of the warped

throat should be described by a non-extremal black brane, based on the correspondence

principle for D-branes and black branes [31].

Roughly speaking, the correspondence principle says that a stringy object and the

corresponding black object with the same charges are different descriptions of the same

object. The black object is a better description if the gravitational radius is larger than

the size of the stringy object. Thus, in order for the anti-D3-branes to be described by

a black brane, the gravitational radius Rg given by (5.8) must be greater than both the

2To be precise, this Rg is the gravitational radius for a BPS-saturated, isolated stack of anti-D3-branes.

However, (5.8) is expected to be reasonably accurate, provided that the minimum length scale
√

gsM ls

of the throat geometry is sufficiently longer than the Rg . This condition is actually satisfied for the

examples (5.14) and (5.17).
3If ls is longer then this condition becomes weaker.
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string scale ls and the radius RS2 of the non-supersymmetric NS 5-brane “giant graviton”

configuration given by (5.12). Therefore, hereafter, we impose the condition

Rg >∼ RS2, Rg >∼ ls. (5.13)

Under this condition, according to the correspondence principle for D-branes and black

branes [31], the bound object of N3 anti-D3-branes should be described by a black brane.

Note, however, that this configuration cannot be a BPS saturated state since supersym-

metry is explicitly broken in the present setup. Therefore, we conclude that this must be

a non-extremal black brane.

We now see that there is a range of parameters in which the condition (5.13) is com-

patible with the KKLT-type moduli stabilization. Again, for concreteness, we adopt the

range (5.7) for the Euler characteristics of the Calabi-Yau fourfold. The goal is to find

a set of parameters (N 3, M , K, gs) which satisfies (5.13), (5.9), (5.11), (5.1) and (5.7)

simultaneously and which gives an sufficiently small value of the coefficient D of δV . Here,

χ should satisfy the tadpole condition (5.6) and D is given by the formula (5.3). This is

indeed possible. For example,

N3 = 22, M = 553, K = 131, gs = 0.1 (5.14)

satisfy all conditions, leading to

a0 ≃ 7 × 10−3,
D

T3
≃ 10−4, χ = 1738104, (5.15)

and
R2

S2

R2
g

≃ 1,
l2s
R2

g

≃ 0.19 . (5.16)

This value of D is small enough that the anti-D3-brane contribution to the moduli potential

is under control. Indeed, this value roughly corresponds to the value used in figure 1 if

A2 ≃ T3. Another example is

N3 = 14, M = 397, K = 180, gs = 0.2, (5.17)

which corresponds to

a0 ≃ 9 × 10−3,
D

T3
≃ 10−5, χ = 1714704, (5.18)

and
R2

S2

R2
g

≃ 1,
l2s
R2

g

≃ 0.17 . (5.19)

Note that there is no argument prohibiting χ larger than (5.7). If Calabi-Yau fourfolds

with larger χ are found then it will be easier to satisfy all the consistency conditions.

In summary, if the number of anti-D3-branes N3, the flux number M and the string

coupling gs satisfy the condition (5.13) then the type IIB warped flux compactification

should include a non-extremal black brane at the bottom of a warped throat. As shown
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explicitly, it is possible to find a set of parameters for which the condition (5.13) is com-

patible with the KKLT-type moduli stabilization.

Note that the gravitational radius Rg in the above examples is not large enough to

make classical description of the black brane reliable. Indeed, since l2s/R
2
g ∼ 20%, we

should expect α′-corrections of order 20% or so. We suppose that those α′-corrections do

not accidentally restore the symmetry broken in the classical level and that the Lorentz

symmetry along the world-volume of the black brane remains spontaneously broken. In

the next subsection we shall introduce another brane parallel to the world-volume of the

black brane and consider it as our 4-dimensional universe. At the position of our brane

the α′-corrections should be negligible and the geometry can be treated classically if it is

sufficiently far from the black brane.

Note also that, while we have considered stabilizing only one Kähler modulus, in

general the number of Kähler moduli is not just one. Indeed, Calabi-Yau fourfolds with

large Euler number, which we have considered, tend to have many Kähler moduli. As a

result, rigorous treatment of Kähler moduli stabilization is rather involved. (See e.g. [46],

where 51 Kähler moduli are stabilized.) In the above analysis, following KKLT and other

works in the literature, we have considered only one Kähler modulus and have seen how

difficult it is to achieve stabilized models. In particular, we have seen that the moduli

stabilization sets strong constraints on the model parameters (N 3, M , K, gs) other than

those directly related to the Kähler moduli stabilization (W0, A, a). Since inclusion of all

other Kähler moduli certainly complicates the analysis, at this moment we do not know

whether inclusion of them strengthens or weakens the constraints on the former set of model

parameters (N3, M , K, gs). With a large number of Kähler moduli, we will certainly have

extra parameters as well as extra stability conditions. Further studies towards complete

analysis of moduli stabilization are certainly worthwhile pursuing.

5.4 Lorentz breaking on our brane

We now introduce another brane as our universe and arrange it to be parallel to the world-

volume of the black brane. Our brane may be placed either in the bulk region, where the

warp factor is of order unity, or in another throat.

If the KKLT type moduli stabilization is valid then this configuration allows the in-

duced geometry on our brane to be maximally symmetric, either Minkowski or de Sitter.

Judging from what happens in the Randall-Sundrum type braneworld cosmology [47 – 55],

one might expect that the black brane would behave as “dark radiation” [52] and that

the 4-dimensional universe would expand like radiation-dominated one. However, since all

moduli are stabilized, this expectation is not correct and the black brane is indistinguish-

able from the 4-dimensional cosmological constant from the viewpoint of the gravitational

source driving the homogeneous, isotropic evolution of the 4-dimensional universe. In

the Randall-Sundrum type setup without radion stabilization, the scale factor of the 4-

dimensional universe on the UV brane would be the radial position of the UV brane in

the 5-dimensional AdS-Schwarzschild geometry [55]. In this language the expansion of the

universe would be due to the motion of the brane away from the black brane. The effect

of the black brane on the UV brane would be diluted as the UV brane moves away, and
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this is the reason why the effective energy density of the ”dark radiation” scales as 1/a4

in accord with the radial dependence of the projected Weyl tensor [56]. On the other

hand, in the present setup all moduli are stabilized. Thus, the shape and the size of the

internal space do not change significantly as the universe expands. Since both the black

brane and our brane are located in the internal space, this means that there is no way to

dilute the influence of the black brane on our 4-dimensional universe. The black brane is

always there! (The Hawking radiation is negligible for tiny deviation from extremality.)

Thus, we are led to the conclusion that the effective 4-dimensional energy density induced

by the black brane cannot depend as strongly as the dark radiation on the scale factor of

the 4-dimensional universe. In other words, the effect of the black brane on our brane is

indistinguishable from a cosmological constant as far as homogeneous, isotropic evolution

of the 4-dimensional universe is concerned. Therefore, the 4-dimensional universe should

admit maximally symmetric solutions, either Minkowski or de Sitter spacetime.

The non-extremal black brane breaks the Lorentz symmetry along the world-volume

down to the spatial rotational invariance and the spacetime translational invariance. This

is due to different radial dependence of the time-time and the space-space components of

the black brane metric. Intuitively, this is because the black brane has a preferred frame

in which it is at rest. Since the brane representing our 4-dimensional world is parallel to

the world-volume of the black brane, the Lorentz symmetry in our 4-dimensional world is

spontaneously broken by the existence of the black brane but the spatial rotational invari-

ance and the spacetime translational invariance are still preserved. Note again that the

induced metric on our brane is Minkowski or de Sitter even though the Lorentz symmetry

is broken. This leads to a Higgs phase of gravity in our world.

5.5 Horizon modes and (locally) localized gravity

Suppose that the warp factor on our brane is much larger than the small warp factor near

the black brane. This is indeed the case if our brane is located in the bulk region, where

the warp factor is of order unity, or in another throat shorter than the black brane throat.

In this case, due to the (locally) localized gravity phenomenon [57, 58], the overlap of

the graviton zero mode with modes localized near the black brane horizon is exponentially

suppressed compared with the overlap with matter on our brane. This is because the

overlap is controlled by the warp factor. Therefore, gravity on our brane is essentially

unaffected by modes localized near the black brane.

The black brane horizon should change the boundary condition for 10-dimensional

fields near the tip of the warped throat and modify the Kaluza-Klein (KK) spectrum

significantly. In a sense, this is analogous to what happens in the ’t Hooft’s brick wall

model for black hole entropy [59, 60]. Because of the infinite blue-shift at the horizon,

modes with finite frequencies measured from a distance can have arbitrarily high local

frequencies near the horizon. Therefore, there can be infinite number of extra modes

associated with the presence of the horizon. The ’t Hooft’s proposal was to relate the

number of those extra modes to the black hole entropy. In the present setup, one might

think that those extra modes threaten the recovery of the 4-dimensional gravity since they

are expected to form a gapless mass spectrum.
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Nonetheless, those extra light modes localized near the black brane do not affect gravity

on our brane. We are considering a situation where the warp factor on our brane is much

larger than the warp factor near the black brane. Therefore, as explained above, due to the

(locally) localized gravity, those extra modes essentially do not interact with the graviton

zero mode nor with matter on our brane. Thus, 4-dimensional gravity should be recovered

on our brane.

The same reasoning implies that the scale of spontaneous Lorentz breaking on our

brane should be rather low compared with the fundamental scale. This is because Lorentz

breaking modes are localized near the black brane and, thus, has exponentially small overlap

with the graviton zero mode. Despite the tininess of Lorentz breaking, the Higgs phase of

gravity has dramatic consequences on gravity and cosmology in our world as reviewed in

the introduction.

6. Summary and discussion

As a step towards a Higgs phase of gravity in string theory, we have considered a braneworld

scenario with a black brane parallel to our brane. This is motivated by the following

observations. (a) The structure of the low energy effective field theory (EFT) of gauged

ghost condensation is determined solely by the symmetry breaking pattern. (b) Similarities

between the Jeans-like instability of the Nambu-Goldstone (NG) boson and the Gregory-

Laflamme (GL) instability of black branes suggest using a black brane. (c) A non-extremal

black brane tends to spontaneously break the Lorentz symmetry along its world-volume.

(d) In order for a black brane to break the Lorentz symmetry in our world, our world must

be parallel to the world-volume of the black brane. (e) In (higher-dimensional) general

relativity, branes with codimensions more than two tend to form black branes when the

brane thickness is sufficiently small.

The existence of the black brane horizon spontaneously breaks the Lorentz symmetry

on our brane but preserves the rotational and translational invariance. To investigate

moduli stabilization, we have considered a KKLT-type moduli potential and found sets of

parameters which realize stabilized moduli. We have also pointed out a possible obstacle

to the use of the KKLT-type moduli potential which stabilizes only one Kähler modulus:

our setup tends to include many Kähler moduli and the complete analysis should be rather

involved. If the moduli stabilization remains valid after taking all Kähler moduli into

account, then this setup leads to a Higgs phase of gravity in string theory and, thus, may

be considered as a UV completion of the gauged ghost condensation.

If the gauge coupling in the EFT of the gauged ghost condensation is small enough

then this setup reduces to the ghost condensation and the NG boson coupled to gravity

exhibits Jeans-like instability. We have speculated that the geometrical counter-part of

Jeans-like instability might be related to the GL instability of the non-extremal black

brane.

Having proposed a possible scenario towards a UV completion of the gauged ghost

condensation, let us now discuss physics beyond the low energy EFT. For example, this

geometrical setup may make it possible for us to think about transition from the symmetric
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phase to the broken phase. As described in subsection 5.2, N3 anti-D3-branes distributed

over the S3 at the bottom of the warped throat feel attractive force towards each other

and they form a bound object. Provided that gs <∼ 1 and that gsN3 >∼ 1, initially the

gravitational radius of each anti-D3-brane is less than the string scale but the gravitational

radius of the final bound object is greater than the string scale. Therefore, as argued in

section 5.3, while the stringy picture is a good description for the initial state, the black

brane picture is more relevant for the final state. Thus, this process can be considered

as gravitational collapse of a collection of anti-D3-branes to form a black brane. Before

the gravitational collapse, the 4-dimensional Lorentz symmetry is preserved. On the other

hand, the 4-dimensional Lorentz symmetry is spontaneously broken after the formation of

the black brane by gravitational collapse.

In this picture, the final state is stationary. This is the reason why the residual sym-

metry can include not only the 3-dimensional spatial diffeomorphism invariance but also

an unbroken U(1) gauge symmetry. In the limit g2 ≪ g2
c , the latter symmetry is translated

to a global shift symmetry in the EFT of the NG boson. Therefore, it is easy to infer how

we can break the shift symmetry. In the situation where g2 ≪ g2
c , if the non-extremal black

brane at the tip of the warped throat is not exactly stationary but time-dependent then

the shift symmetry is broken, while the 3-dimensional spatial diffeomorphism invariance

still remains. If the black brane is quasi-stationary then the breaking of the shift symmetry

should be very weak.

It is certainly worthwhile considering other nonlinear and/or UV issues beyond the

EFT. As an example, the UV completion might provide some new insight on nonlinear

dynamics of the NG boson triggered by the Jeans-like instability for the case g2 < g2
c .

The endpoint of the GL instability is still a question under debate. It might be a small

black holes or a non-uniform black brane. In any case, according to our consideration,

the endpoint of the GL instability should correspond to the endpoint of nonlinear evolu-

tion of the NG boson triggered by the Jeans-like instability. Therefore, knowledge about

the endpoint of the GL instability might provide new insight on nonlinear dynamics of

gravity in the Higgs phase. In particular, this line of consideration might determine the

non-linear properties of an alternative to dark matter in the context of ghost condensa-

tion.

The way to end the ghost inflation is also an issue for which the UV completion might

be useful. In ref. [7] it was assumed that the shift symmetry is broken locally so that an

inflationary de Sitter phase ends gracefully. In the EFT language, this can, for example,

be due to a phase transition in another sector triggered by the scalar field responsible for

the ghost condensate. In our UV completion, as discussed above, the shift symmetry is

broken if the black brane at the bottom of a warped throat is time-dependent. Thus, if the

black brane experiences a transition from an almost stationary phase to another almost

stationary phase then the shift symmetry is broken essentially in the transition period

only. Depending on the nature of the transition, the 4-dimensional effective cosmological

constant changes and the initial inflationary phase can end gracefully. The cause of the

transition may be a capture of another brane by the black brane, a merger of black branes,

and so on. There may be other possibilities to UV complete the idea of ghost inflation.
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Couplings to the matter sector is also worthwhile investigating in the geometrical

setup. In the EFT language, refs. [6, 28] listed allowed couplings between the (ungauged

or gauged) ghost condensate and the matter sector, and discussed physical consequences.

For example, the Lorentz- and CPT-violating Chern-Simon operator of the electromagnetic

field can be forbidden by imposing a discrete symmetry [6]. It is certainly important to see

if the matter sector can be embedded with this kind of discrete symmetry in the present

geometrical setup.

As already stated many times, the ghost condensation can be obtained as the g2 ≪
g2
c limit of the gauged ghost condensation, for which we have suggested a possible UV

completion. In the context of the EFT, this limit can be achieved by fine-tuning the gauge

coupling g. However, we do not yet know whether this limit of the geometrical setup really

exists or not. It is certainly worthwhile to express actual values of the coupling constant

g and the scale of symmetry breaking M in terms of the parameters of the geometrical

setup.
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A. Four-parameter family of black-brane solutions

We consider the Einstein-frame metric ds2
10, the dilaton φ and the RR field C(p+1) of the

form

ds2
10 = −e2A0(r)dt2 + e2A(r)δijdxidxj + e2B(r)(dr2 + r2Ω(8−p)

mn dθmdθn),

φ = φ(r),

C(p+1) = −C(r) dt

p
∏

i=1

∧dxi, (A.1)

where i, j = 1, · · · , p; m,n = p+2, · · · , 9; and Ω
(8−p)
mn dθmdθn is the metric of the unit (8−p)-

sphere. The RR field C(p+1) is related to the RR field strength F8−p as F8−p = e(3−p)φ/2 ∗
dC(p+1) for p = 4, 5, 6 and to the self-dual RR field strength F5 as F5 = (1/

√
2)(dC(4) +

∗dC(4)) for p = 3. In order to impose the regularity of the black brane horizon, the following
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expression for the Riemann tensor is useful.

Rtr
tr = −(A′′

0 + A′
0
2 − A′

0B
′)e−2B ,

Rir
jr = −(A′′ + A′2 − A′B′)e−2Bδi

j ,

Rmr
nr = −

(

B′′ +
B′

r

)

e−2Bδm
n ,

Rmn
m′n′ = −B′

(

B′ +
2

r

)

e−2B(δm
m′δn

n′ − δm
n′δn

m′),

Rti
tj = −A′

0A
′e−2Bδi

j , ∗

Rtm
tn = −A′

0

(

B′ +
1

r

)

e−2Bδm
n ,

Rim
jn = −A′

(

B′ +
1

r

)

e−2Bδi
jδ

m
n ,

Rij
i′j′ = −A′2e−2B(δi

i′δ
j
j′ − δi

j′δ
j
i′). (A.2)

The general solution to the type II A/B supergravity with this ansatz is obtained as a

four-parameter family of p-brane solutions [61]. In the notation of [62] the four-parameter

family is written as

A0(r) = A(r) +
1

2
ln f(r),

f(r) = e−c3h(r),

A(r) =
(7 − p)

32

{

−p − 3

2
c1 +

[

1 +
(p − 3)2

8(7 − p)

]

c3

}

h(r)

−7 − p

16
ln [cosh(k h(r)) − c2 sinh(k h(r))] ,

B(r) =
1

7 − p
ln [f−(r)f+(r)] +

p − 3

64

[

(p + 1)c1 +
p − 3

4
c3

]

h(r)

+
p + 1

16
ln [cosh(k h(r)) − c2 sinh(k h(r))] ,

φ(r) =
7 − p

16

[

(p + 1)c1 +
p − 3

4
c3

]

h(r)

−p − 3

4
ln [cosh(k h(r)) − c2 sinh(k h(r))] ,

C(r) = ±
√

c2
2 − 1 sinh(k h(r))

cosh(k h(r)) − c2 sinh(k h(r))
, (A.3)

where

h(r) = ln

[

f−(r)

f+(r)

]

,

f±(r) ≡ 1 ±
(r0

r

)7−p
,

k =

√

2(8 − p)

7 − p
− c2

1 +
1

4

(

3 − p

2
c1 +

7 − p

8
c3

)2

− 7

16
c2
3. (A.4)
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The reality and regularity of the RR field in the region |r7−p
0 | ≤ r7−p < ∞ require that k

and c2 be real and that c2 ≥ 1 and c2 ≤ −1 for r7−d
0 > 0 and r7−d

0 < 0, respectively. In

order for k to be real, c1 and c3 must satisfy c1− ≤ c1 ≤ c1+ and c2
3 ≤ c 2

3max, where

c1± = − (p − 3)c3

4(p + 1)
± 2

p + 1

√

2p(c 2
3max − c2

3)

7 − p
,

c 2
3max =

4(p + 1)(8 − p)

p(7 − p)
. (A.5)

Let us first consider the case with r7−d
0 > 0 (we shall consider the case with r7−p

0 < 0

later). In this case, for generic values of the parameters the Ricci scalar diverges at r = r0

(> 0). The leading term is R ∼ βRr−2
0 y−γ , where

y =
7 − p

2

(

r

r0
− 1

)

,

γ = −
[

(p + 1)(p − 3)c1

32
+

(p − 3)2c3

128
+

2(8 − p)

7 − p

]

+
p + 1

8
k,

βR = 2−[10+4/(7−p)−(p+1)/8](c2 + 1)−(p+1)/8(7 − p)3 ×
{

16(8 − p)(p − 3)2

(7 − p)2
− (p + 1)(p2 − 6p + 1)c2

1 −
(p − 3)(p2 − 6p + 1)

2
c1c3

+
(p − 3)2(p2 − 14p − 7)

16(7 − p)
c2
3 + (p − 3)[4(p + 1)c1 + (p − 3)c3]k

}

. (A.6)

It is easy to show that γ is positive and, thus, R indeed diverges at r = r0 unless βR = 0.

By setting βR = 0, we obtain

c1 = −(p − 3)c3

4(p + 1)
− p − 3

p + 1

√

p(c 2
3max − c2

3)

2(7 − p)
. (A.7)

With this value of c1, the leading behavior of the Kretchmann scalar K ≡ RMN
M ′N ′RM ′N ′

MN

near r = r0 is K ∼ βKr−4
0 y−2γ , where

βK = 2−[10+8/(7−p)−(p+1)/4](c2 + 1)−(p+1)/4 p(7 − p)3

p + 1

×
{

7p3 − 74p2 + 375p − 56

(p + 1)2
c4
3 −

64(8 − p)(p − 1)

p + 1
c3
3

−8(p + 17)(8 − p)

p + 1
c2
3 −

16(8 − p)(23p3 − 386p2 + 1319p + 2304)

p(7 − p)2

+128

[

4(p − 1)

(p + 1)2
c3
3 +

(15 − p)(8 − p)

(7 − p)(p + 1)
c2
3 +

4(p + 9)(8 − p)2

p(7 − p)2

]

k

}

,

k =
1

8

√

2p(7 − p)
(

c 2
3max − c2

3

)

. (A.8)
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By requiring that βK = 0, we obtain4 c3 = −2. Therefore, the regularity of the horizon at

r = r0 requires that

c1 = − p − 3

2(7 − p)
, c3 = −2 for r7−d

0 > 0. (A.9)

The above analysis can be repeated for the case with r7−p
0 < 0. The leading behavior

of the Ricci scalar near r = |r0| is R ∼ β̃R|r0|−2y−γ̃ , where β̃R and γ̃ are βR and γ in (A.6)

with the replacement (c1, c2, c3) → (−c1,−c2,−c3). Again, γ̃ is shown to be positive and

the regularity of the Ricci scalar at r = |r0| requires β̃R = 0, which implies (A.7) with

the replacement (c1, c3) → (−c1,−c3). With this value of c1, the leading behavior of the

Kretchmann scalar is K ∼ β̃K |r0|−4y−2γ̃ , where β̃K is βK in (A.8) with the replacement

(c2, c3) → (−c2,−c3). Hence, by requiring β̃K = 0, we obtain

c1 =
p − 3

2(7 − p)
, c3 = 2 for r7−d

0 < 0. (A.10)

We are now left with the two parameters r7−d
0 and c2. The 10-dimensional Einstein-

frame metric is

ds2
10 = e2A(r)

[

−
(

f̄−(r)

f̄+(r)

)2

dt2 + δijdxidxj

]

+ e2B(r)(dr2 + r2Ω(8−p)
mn dθmdθn), (A.11)

where

f̄±(r) = 1 ±
( |r0|

r

)7−p

,

A(r) = −7 − p

16
ln

[

1 − |c2|
2

(

f̄−(r)

f̄+(r)

)2

+
1 + |c2|

2

]

,

B(r) =
1

7 − p
ln

(

f̄−(r)f̄+(r)
)

− (p − 3)2

16(7 − p)
ln

(

f̄−(r)

f̄+(r)

)

+
p + 1

16
ln

[

1 − |c2|
2

(

f̄−(r)

f̄+(r)

)

+
1 + |c2|

2

(

f̄+(r)

f̄−(r)

)]

. (A.12)

The dilaton and the RR field are

φ(r) = −p − 3

4
ln

[

1 − |c2|
2

(

f̄−(r)

f̄+(r)

)2

+
1 + |c2|

2

]

,

C(r) = ±
√

|c2|2 − 1
[

f̄+(r)2 − f̄−(r)2
]

(1 + |c2|)f̄+(r)2 + (1 − |c2|)f̄−(r)2
. (A.13)

Note that c2 ≥ 1 for r7−p
0 > 0 and c2 ≤ −1 for r7−p

0 < 0. The two parameter solution

actually agrees with the black p-brane solution of ref. [63] up to the coordinate transfor-

mation between the isotropic coordinate in the present analysis and the Schwarzschild-like

4For p = 1, c3 = 2 also satisfies βK = 0. However, we need p ≥ 3 to accommodate the 3-dimensional

spatial diffeomorphism of our 4-dimensional universe. Thus, we restrict our consideration to the cases with

p = 3, 4, 5, 6. In these cases C2 = −2 is the unique solution to βK = 0.
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coordinate in [63]. From this form of the metric, it is seen that, for r7−p
0 6= 0, the solution

has a p-dimensional spatial rotational invariance but does not have a (p + 1)-dimensional

Lorentz symmetry. For r7−p
0 = 0 with c2 finite, the solution is trivial.

If we take the scaling limit r7−p
0 → ±0, c2 → ±∞ with c2 r7−p

0 kept finite, the solution

reduces to the BPS Dp-brane:

ds2
10 = f

−
7−p

8

0 ηµνdxµdxν + f
p+1

8

0 (dr2 + r2Ω(8−p)
mn dθmdθn),

eφ = f
−

p−3

4

0 ,

C = ±
(

1 − f−1
0

)

, (A.14)

where µ, ν = 0, 1, · · · , p, x0 = t and

f0 = 1 +
µ0

r7−p
, µ0 ≡ 2c2r

7−p
0 . (A.15)

In this limit the (p + 1)-dimensional Lorentz symmetry is restored but the extremality is

also recovered at the same time.

On the other hand, for generic values of the parameters r7−d
0 and c2, the solution

does not possess the (p + 1)-dimensional Lorentz symmetry. Therefore, we conclude that

within the four-parameter family of solutions, a regular non-extremal black p-brane always

breaks the (p+1)-dimensional Lorentz symmetry along its world-volume but preserves the

p-dimensional spatial rotational invariance. Evidently, the (p+1)-dimensional translational

invariance along the world-volume is unaffected by the non-extremality.
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